Interim Futility Analysis of a Phase 2 Study of Loncastuximab Tesirine, a Novel Pyrrolobenzodiazepine-Based Antibody-Drug Conjugate, in Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma

<u>Carmelo Carlo-Stella</u>¹, Pier Luigi Zinzani², Brad Kahl³, Paolo Caimi⁴, Melhem Solh⁵, William Townsend⁶, Anastasios Stathis⁷, Elizabeth Cull⁸, Mehdi Hamadani⁹, Alexander Spira¹⁰, Jay Feingold¹¹, David Ungar¹¹, Shui He¹¹, Yajuan Qin¹¹, John Radford¹²

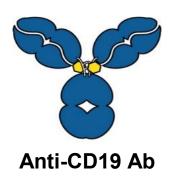
¹Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas University, Milan, Italy; ²Institute of Hematology "Seràgnoli" University of Bologna, Bologna, Italy; ³Department of Medicine, Oncology Division, Washington University, St. Louis, MO, USA; ⁴University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, USA; ⁵Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA; ⁶Department of Haematology, University College London Hospitals, NHS Foundation Trust, London, UK; ⁷Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; ⁸Department of Oncology & Hematology, Prisma Health, Greenville Memorial Hospital, Greenville, SC, USA; ⁹Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; ¹⁰Virginia Cancer Specialists Research Institute, Fairfax, VA, USA; ¹¹ADC Therapeutics America Inc., Murray Hill, NJ, USA; ¹²University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Centre, Manchester, UK.

61st American Society of Hematology Annual Meeting & Exposition December 7–10, 2019, Orlando, FL, USA

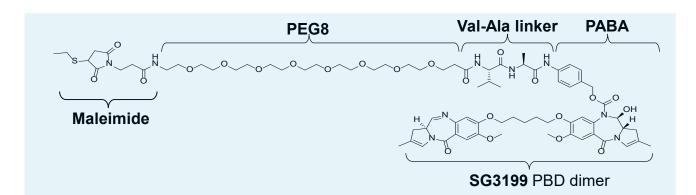
Acknowledgments

Investigators and affiliations

- C Carlo-Stella, Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas University, Milan, Italy
- PL Zinzani, Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy
- B Kahl, Department of Medicine, Oncology Division, Washington University, St. Louis, MO, USA
- P Caimi, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, USA
- M Solh, Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA, USA
- W Townsend, Department of Haematology, University College London Hospitals, NHS Foundation Trust, London, UK
- A Stathis, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- E Cull, Department of Oncology & Hematology, Prisma Health, Greenville Memorial Hospital, Greenville, SC, USA


- M Hamadani, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- A Spira, Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- J Radford, University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Centre, Manchester, UK

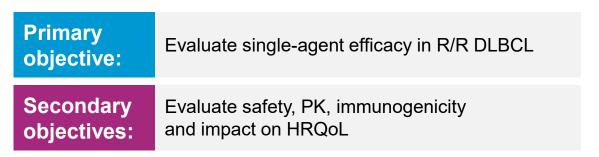
> ADC Therapeutics


- J Feingold, ADC Therapeutics America Inc., Murray Hill, NJ, USA
- S He, ADC Therapeutics America Inc., Murray Hill, NJ, USA
- Y Qin, ADC Therapeutics America Inc., Murray Hill, NJ, USA
- D Ungar, ADC Therapeutics America Inc., Murray Hill, NJ, USA

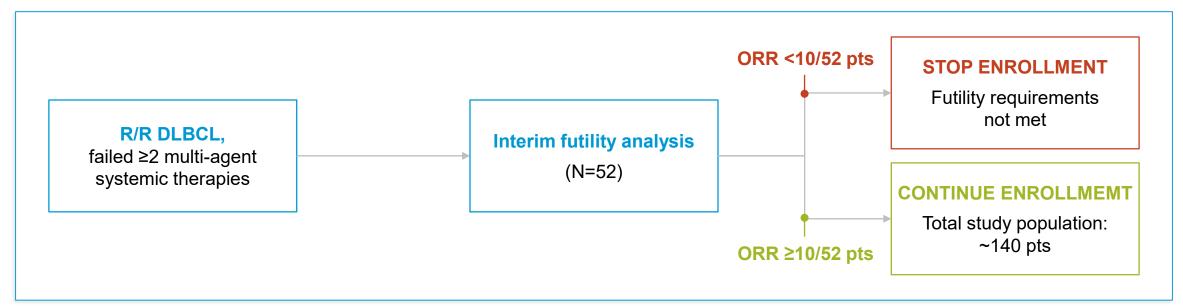
The authors would like to thank all the participating patients and their families, all study co-investigators and research coordinators. Editorial support was provided by Fishawack Communications Ltd.

Loncastuximab Tesirine (ADCT-402)

Tesirine/ SG3249


Loncastuximab tesirine comprises a humanized anti-CD19 Ab stochastically conjugated to a potent PBD dimer toxin¹

The majority of B-cell malignancies express CD19 at normal to high levels²

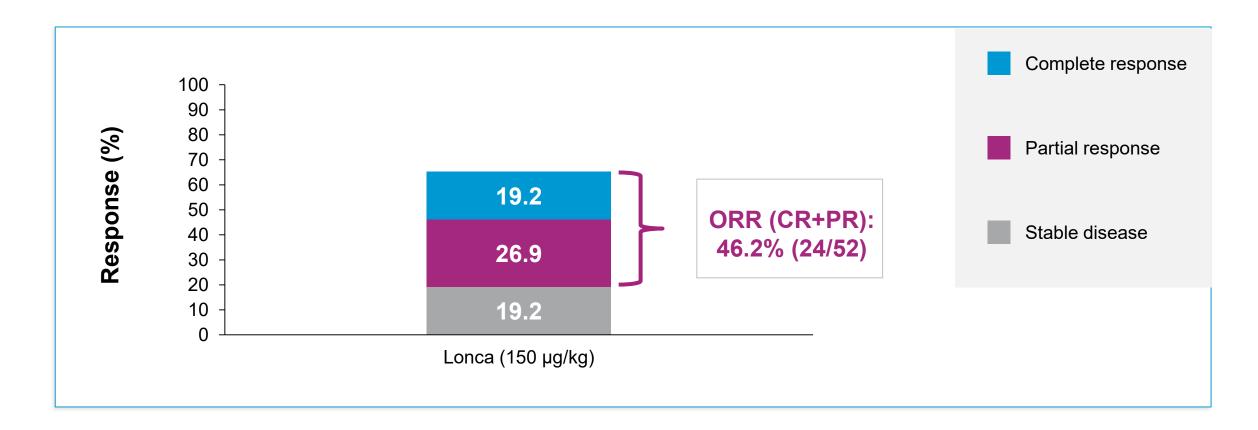

- 1. Loncastuximab tesirine binds to CD19 antigen on the tumor cell surface
- 2. ADC is internalized, the linker is cleaved, and PBD dimers are released
- 3. Cytotoxic DNA cross-link formation
- 4. Stalled DNA replication fork
- 5. Cell goes into apoptosis
- 1. Zammarchi F, et al. *Blood*. 2018;131:1094–105. 2. Wang K, et al. *Exp Hematol Oncol*. 2012;1:36.

Ab, antibody; ADC, antibody-drug conjugate; CD19, cluster of differentiation 19; PABA, para-aminobenzoic acid; PBD, pyrrolobenzodiazepine; PEG, polyethylene glycol; Val-Ala, valine-alanine.

Loncastuximab Tesirine Phase 2 DLBCL Study (NCT03589469)

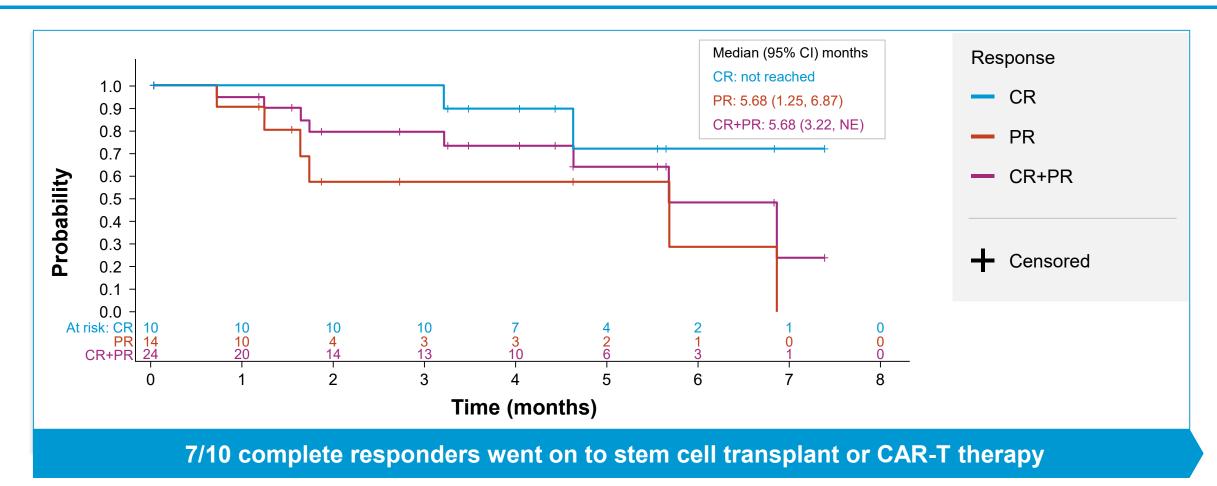
30-min intravenous infusion of 150 μg/kg Q3W×2 cycles, followed by 75 μg/kg Q3W

DLBCL, diffuse large B-cell lymphoma; HRQoL, health-related quality of life; ORR, overall response rate; PK, pharmacokinetics; pts, patients; Q3W, every three weeks; R/R, relapsed/refractory.


Baseline Characteristics

Pati	Total (N=52)	
Sex, n (%)	Male Female	38 (73.1) 14 (26.9)
Race, n (%)	White Black/African American Asian Other	48 (92.3) 2 (3.8) 1 (1.9) 1 (1.9)
Age, years, median	63 (24, 84)	
Histology, n (%)	DLBCL Double/triple hit Transformed disease Follicular Richter's HGBCL PMBCL	45 (86.5) 3 (5.8) 8 (15.4) 7 (13.5) 1 (1.9) 4 (7.7) 3 (5.8)
Stage, n (%)	I–II III–IV	14 (26.9) 38 (73.1)

Patient treatment his	Total (N=52)	
First-line systemic therapy response, n (%)	Relapsed Refractory Other*	32 (61.5) 16 (30.8) 4 (7.7)
Last-line systemic therapy response, n (%)	Relapsed Refractory Other*	17 (32.7) 28 (53.8) 7 (13.5)
No. of previous systemic therapies, m	3 (2, 7)	
Prior stem cell transplantation, n (%)	Allogeneic Autologous Both	11 (21.2) 1 (1.9) 9 (17.3) 1 (1.9)


^{*}Other defined as unknown, not evaluable or missing. DLBCL, diffuse large B-cell lymphoma; HGBCL, high-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements; PMBCL, primary mediastinal B-cell lymphoma. Data shown as of Oct 14, 2019.

Overall Response Rate (based on independent review)

CR, complete response; Lonca, loncastuximab tesirine; ORR, overall response rate; PR, partial response. Data shown as of Oct 14, 2019.

Duration of Response

Includes central radiology review of progression, death, and clinical progression assessed by sites without radiologic confirmation. CAR-T, chimeric antigen T-cell; CI, confidence interval; CR, complete response; NE, not evaluable; PR, partial response. Data shown as of Oct 14, 2019.

Characteristics of Complete Responders

Patient characteristics						
Patient	Histology	Cycles (N)	Study Treatment Status	Subsequent Therapy/Outcome		
1	DLBCL	2	Discontinued	CAR-T		
2	HGBCL	6	Discontinued	Remains in CR		
3	DLBCL	8	Discontinued	SCT		
4	DLBCL, transformed follicular	4	Discontinued	SCT		
5	DLBCL	2	Discontinued	Progressive disease: death		
6	DLBCL, double expressor	10	Ongoing	Remains in CR		
7	DLBCL	4	Discontinued	Autologous SCT		
8	DLBCL	10	Discontinued	Allogeneic SCT		
9	DLBCL, transformed follicular	5	Discontinued	Autologous SCT		
10	DLBCL, transformed follicular	5	Discontinued	Allogeneic SCT		

CAR-T, chimeric antigen receptor T cell; CR, complete response; DLBCL, diffuse large B-cell lymphoma; HGBCL, high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements; SCT, stem cell transplant. Data shown as of Oct 14, 2019.

TEAE Profile

Non-hematological TEAEs (reported in ≥20% patients) (N=52)Preferred term, n (%) Grade 1-2 **Grade ≥3 GGT** increased 14 (26.9) 13 (25.0) 18 (34.6) Pyrexia 15 (28.8) Cough Hypokalemia 12 (23.1) 3 (5.8) 15 (28.8) Nausea **ALP** increased 13 (25.0) 1 (1.9) **Fatigue** 12 (23.1) 2 (3.8) 11 (21.2) Vomiting

Hematological TEAEs (reported in ≥20% patients) (N=52) Preferred term, n (%) Grade 1–2 Grade ≥3 Platelet count decreased* 26 (50.0) 11 (21.2) Neutrophil count decreased* 12 (23.1) 17 (32.7) Anemia 8 (15.4) 6 (11.5)

^{*}These data are based on laboratory abnormality reporting. ALP, alkaline phosphatase; GGT, gamma-glutamyltransferase; TEAE, treatment-emergent adverse event. Data shown as of Oct 14, 2019.

TEAEs of Interest

Fatal TEAEs were observed in 3 patients (5.8%)*: pneumonia, septic shock, hemoptysis

• These events were considered **not related** to the study treatment

Overall, 13 (25.0%) patients had Lonca treatment withdrawal due to TEAEs

• 7 patients (13.5%) had study **drug-related TEAEs** leading to withdrawal, most commonly GGT increased (4 patients; 7.7%)

No patients had infusion-related reactions

Edema or effusion events were reported in 15 patients (28.8%)

23.1% at grade 1–2 and 5.8% at grade 3

Skin-related TEAEs were reported in 19 (36.5%) patients; all were grade 1–2

^{*}A fatal event of DLBCL was also reported but was considered to be disease progression. DLBCL, diffuse large B-cell lymphoma; GGT, gamma-glutamyltransferase; Lonca, loncastuximab tesirine; TEAE, treatment-emergent AE. Data shown as of Oct 14, 2019.

Dose Modifications

Most dose delays were <1 week and few dose reductions were required

Only 2 patients (3.8%) required a dose reduction

31 of 177 dose cycles (17.5%) were delayed (>2 days):

- 16 (9%) cycles were delayed <1 week
- 9 (5%) cycles were delayed 1–2 weeks
- 1 (<1%) cycle was delayed 2-3 weeks
- 5 (3%) cycles were delayed >3 weeks

Data shown as of Oct 14, 2019.

Summary

Lonca has encouraging single-agent antitumor activity and manageable toxicity in R/R DLBCL

ORR was 46.2%, with stable disease in a further 19.2% of patients

- Complete response rate was 19.2%
- Median DoR was not reached for complete responders and was 5.7 months for partial responders
- Following a response to Lonca, 7/10 complete responders went to stem cell transplant or CAR-T therapy

Notable toxicities included GGT increased, thrombocytopenia and neutropenia

- GGT increase was not associated with any evidence of liver dysfunction
- Effusion- and skin-related TEAEs were lower than reported in the Phase 1 trial of Lonca in NHL
- Most patients who required dose modifications had short dose delays and were able to continue treatment
 - Futility requirements were met and enrollment in the trial has now been completed

CAR-T, chimeric antigen T cell; DLBCL, diffuse large B-cell lymphoma; DoR, duration of response; GGT, gamma-glutamyltransferase; Lonca, loncastuximab tesirine; NHL, non-Hodgkin lymphoma; ORR, overall response rate; R/R, relapsed/refractory; TEAE, treatment-emergent adverse event.