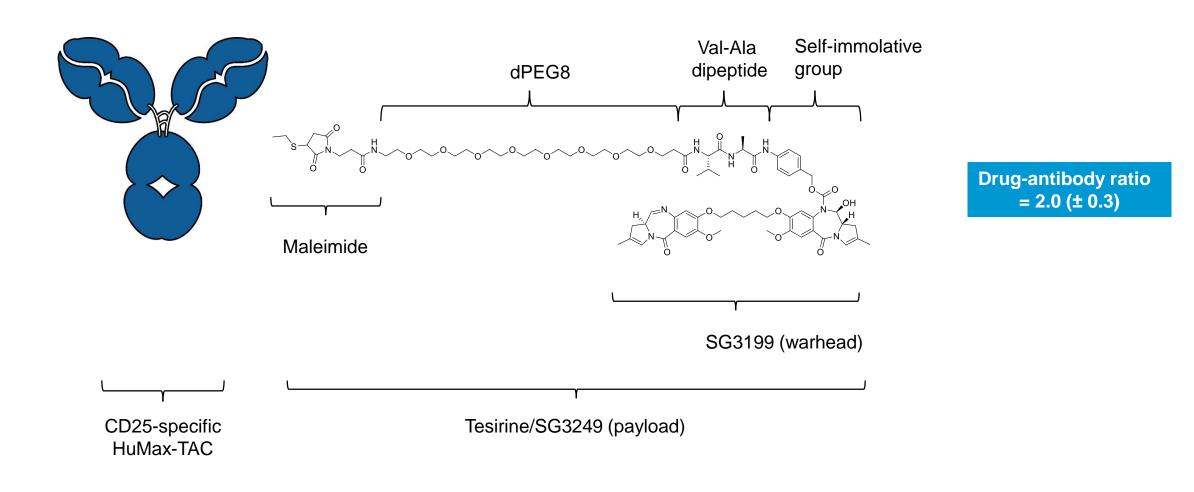
Phase 1 Study of ADCT-301 (Camidanlumab Tesirine), a Novel Pyrrolobenzodiazepine-Based Antibody Drug Conjugate, in Relapsed/Refractory Classical Hodgkin Lymphoma

<u>M Hamadani</u>¹, GP Collins², F Samaniego³, AI Spira⁴, A Davies⁵, J Radford⁶, P Caimi⁷, T Menne⁸, J Boni⁹, HG Cruz¹⁰, JM Feingold⁹, S He⁹, JU Wuerthner¹⁰, SM Horwitz¹¹


¹Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; ²Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; ³Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Virginia Cancer Specialists Research Institute, Fairfax, VA, USA; ⁵Cancer Research UK Centre, University of Southampton, Southampton, UK; ⁶University of Manchester and the Christie NHS Foundation Trust, Manchester, UK; ⁷Case Western Reserve University (CWRU) - University Hospitals Cleveland Medical Center, OH, USA; ⁸The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; ⁹ADC Therapeutics America, Inc., Murray Hill, NJ, USA; ¹⁰ADC Therapeutics, Epalinges, Switzerland; ¹¹Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA

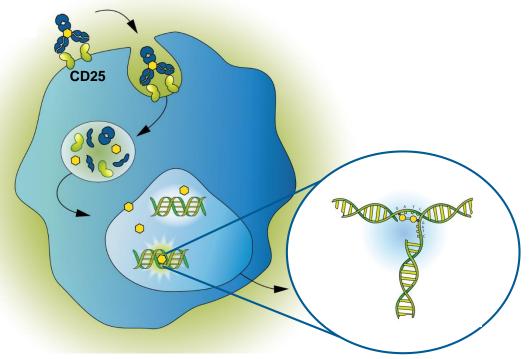
60th American Society of Hematology Annual Meeting & Exposition

December 1–4, 2018, San Diego, CA, USA

Structure and Components of ADCT-301 (camidanlumab tesirine)

Camidanlumab Tesirine Mechanism of Action

Molecular mode of action


- 1. Camidanlumab tesirine binds to the CD25 antigen on the tumor cell surface
- 2. ADC internalization, linker cleavage and PBD release
- 3. Cytotoxic DNA cross-link formation
 - a) Free PBD dimers bind sequence-selectively in the minor groove of cell DNA
 - b) PBD dimers form potent cytotoxic DNA cross-links

4. Stalled DNA replication fork

Cross-links stall the DNA replication fork, blocking cell division and causing cancer cell death

Immunological rationale

Targeting of CD25+ Tregs may increase the Teff:Treg ratio, thus promoting immunological tumor eradication³

ADC, antibody drug conjugate; PBD, pyrrolobenzodiazepine; Teff, effector T cell; Treg, regulatory T cell 1. Hartley JA. *Expert Opin Investig Drugs*. 2011;20:733–744; 2. Flynn MJ, et al. Mol Cancer Ther. 2016;15:2709–21; 3 Sasidharan NV, et al. Immunol Cell Biol. 2018;96:21–33.

Study Design

Histologically confirmed relapsed/refractory NHL* or HL *Including Stage ≥Ib Cutaneous T-cell Lymphoma

2-part study:

- Part 1: Dose escalation: continual reassessment method;
- Part 2: Dose expansion(s)

1-hour intravenous infusion (3–300 µg/kg); Day 1 every 3 weeks

PRIMARY OBJECTIVE: Safety and tolerability and determine the MTD / RDE of camidanlumab tesirine

SECONDARY OBJECTIVES: Pharmacokinetic profile of camidanlumab tesirine Clinical activity of camidanlumab tesirine as measured by ORR, DoR, PFS, and OS

For HL population: MTD was not reached; 2 RDEs for Part 2 were identified as 30 and 45 µg/kg Q3W For NHL population: Data were presented at this meeting in Poster 1658¹ on Saturday, December 1

DoR, duration of response; HL, Hodgkin lymphoma; MTD, maximum tolerated dose; NHL, non-Hodgkin lymphoma; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; RDE, recommended dose for expansion

1. Collins GP, et al. 60th American Society of Hematology Annual Meeting & Exposition, December 1–4, 2018, San Diego, CA, USA. Poster 1658

Inclusion and Exclusion Criteria

Key inclusion criteria

- Age 18 years or older
- Pathologically confirmed relapsed or refractory lymphoma
- Failed, or intolerant to, any established therapy known to provide clinical benefit at current state of disease
- Prior treatment with brentuximab vedotin and checkpoint inhibitor*
- Measurable disease, as defined by the 2014 Lugano Criteria
- Eastern Cooperative Oncology Group performance status 0 to 2

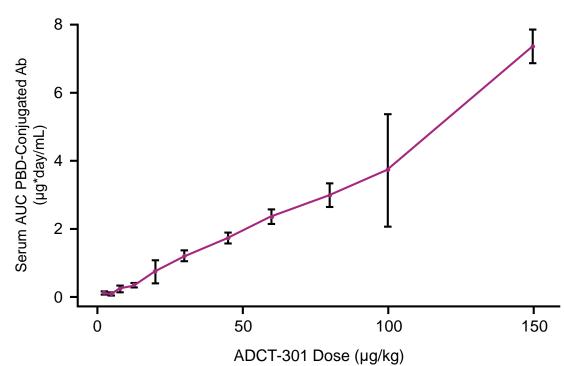
Key exclusion criteria

- Active graft-versus-host disease
- History of symptomatic autoimmune disease
- History of neuropathy considered of autoimmune origin; other central nervous system autoimmune disease.
- History of recent infection considered to be caused by: HSV1, HSV2, VZV, EBV, Cytomegalovirus, measles, Influenza A, Zika virus, Chikungunya virus, m. pneumonia, C. jejuni, or enterovirus D68
- Major surgery, chemotherapy, systemic therapy, or radiotherapy within 14 days prior to Day 1 treatment

HIV, human immunodeficiency virus; HSV 1/2, herpes simplex virus type 1/2; VZV; varicella zoster virus; EBV, Epstein Barr virus * Introduced with Amendment 7 (Jan 2018)

HL population: Baseline Characteristics

Patient characteristic	Total (N=67)
Sex, n (%) Male Female	40 (59.7) 27 (40.3)
Race, n (%) White Black or African American Asian Other	55 (82.1) 4 (6.0) 3 (4.5) 5 (7.5)
Age, years, median (min, max)	38.0 (19, 80)
 Number of previous systemic therapies, median (min, max) Prior brentuximab vedotin (BV), n (%) Prior checkpoint inhibitor (CHPi), n (%) Prior BV and CHPi, n (%) Prior stem cell transplantation, n (%) Allogeneic stem cell transplantation, n (%) 	5.0 (2, 15) 65 (97.0) 47 (70.1) 47 (70.1) 40 (59.7) 7 (10.4)


^aPresented as median (min, max)

Ab, antibody; AUC, area under the curve; CV, coefficient of variation; Q3W, every 3 weeks; SE, standard error of the mean

Data shown as of 16 Oct 2018

Pharmacokinetic Analysis Data

- Exposure in serum increases with dose
- Half-life in patients with lymphoma is reasonably long^a \geq
 - PBD-conjugated antibody 9.1 days (4.3, 25 days)
 - Total antibody 12.0 days (4.4, 62 days)
- Modest to moderate drug accumulation expected with multiple (Q3W) doses
 - At 45 μ g/kg dose (for n=29 patients),
 - ~1.4x (CV=22%) for PBD-conjugated Ab
 - ~2.1x (CV=63%) for total Ab
- PBD (SG3199) exposure predominantly below quantifiable limits; no accumulation is evident
- **No significant anti-drug antibody formation apparent** (n=56 patients evaluated)

Camidanlumab tesirine mean (SE) AUC versus dose

HL population: Most Common All Grades TEAEs (≥20% Patients) (Safety Analysis Set)

TEAEs, n (%)	Dose (µg/kg)					
	≤20 (n=3)	30 (n=10)	45 (n=37)	60 (n=12)	≥80 (n=5)	Total (N=67)
Patients with any grade TEAE	3 (100)	10 (100)	37 (100)	12 (100)	5 (100)	67 (100)
Fatigue	1 (33.3)	5 (50.0)	16 (43.2)	6 (50.0)	2 (40.0)	30 (44.8)
Maculopapular rash	1 (33.3)	5 (50.0)	14 (37.8)	4 (33.3)	2 (40.0)	26 (38.8)
Pyrexia	1 (33.3)	2 (20.0)	12 (32.4)	4 (33.3)	1 (20.0)	20 (29.9)
Gamma-glutamyltransferase increased	2 (66.6)	1 (10.0)	7 (18.9)	5 (41.7)	4 (80.0)	19 (28.4)
Alanine aminotransferase increased	1 (33.3)	0 (0)	9 (24.3)	5 (41.7)	3 (60.0)	18 (26.9)
Aspartate aminotransferase increased	0 (0)	0 (0)	7 (18.9)	5 (41.7)	4 (80.0)	16 (23.9)
Nausea	1 (33.3)	0 (0)	10 (27.0)	0 (0)	4 (80.0)	15 (22.4)
Cough	1 (33.3)	1 (10.0)	9 (24.3)	2 (16.7)	1 (20.0)	14 (20.9)
Dyspnea	1 (33.3)	0 (0)	8 (21.6)	3 (25.0)	2 (40.0)	14 (20.9)
Rash	0 (0)	4 (40.0)	8 (21.6)	2 (16.7)	0 (0)	14 (20.9)

Grey shading indicates liver test abnormalities; blue indicates other toxicities

HL, Hodgkin lymphoma; TEAE, treatment-emergent adverse event

HL population: Most Common TEAEs ≥Grade 3 (≥5% *Patients*) (Safety Analysis Set)

TEAEs ≥Grade 3, n (%)	Dose (µg/kg)					
	≤20 (n=3)	30 (n=10)	45 (n=37)	60 (n=12)	≥80 (n=5)	Total (N=67)
Patients with grade ≥3 TEAE	2 (66.6)	6 (60.0)	24 (64.9)	7 (58.3)	5 (100)	44 (65.7)
Maculopapular rash	1 (33.3)	2 (20.0)	7 (18.9)	1 (8.3)	1 (20.0)	12 (17.9)
Gamma-glutamyltransferase increased	1 (33.3)	1 (10.0)	3 (8.1)	3 (25.0)	4 (80.0)	12 (17.9)
Alanine aminotransferase increased	0 (0)	0 (0)	3 (8.1)	2 (16.7)	2 (40.0)	7 (10.4)
Aspartate aminotransferase increased	0 (0)	0 (0)	1 (2.7)	2 (16.7)	2 (100)	5 (7.5)
Anemia	1 (33.3)	1 (10.0)	3 (8.1)	0 (0)	0 (0)	5 (7.5)
Guillain–Barré syndrome/Radiculopathy	0 (0)	1 (10.0)	3 (8.1)	1 (8.3)	0 (0)	5 (7.5)
Increased lipase	0 (0)	1 (10.0)	3 (8.1)	0 (0)	0 (0)	4 (6.0)

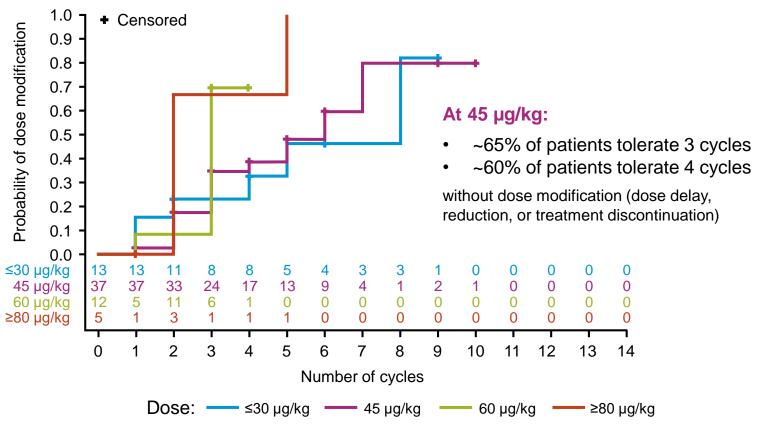
Grey shading indicates liver test abnormalities; red shading indicates hematologic abnormalities; blue indicates other toxicities

HL, Hodgkin lymphoma; TEAE, treatment-emergent adverse event

HL population: Selected Toxicities Summary All Grades (Safety Analysis Set),

Potentially PBD-related toxicities	Dose (μg/kg)					
(SMQ)	≤20 (n=3)	30 (n=10)	45 (n=37)	60 (n=12)	≥80 (n=5)	Total (N=67)
Edema or effusion	1 (33.3)	3 (30.0)	10 (27.0)	2 (16.7)	1 (20.0)	17 (25.4)
Skin related	1 (33.3)	9 (90)	25 (67.6)	10 (83.3)	4 (80.0)	49 (73.1)
Liver function test	3 (100)	1 (10.0)	13 (35.1)	8 (66.7)	4 (80.0)	29 (43.3)
Selected autoimmune toxicities						
Guillain–Barré syndrome/Radiculopathy	0 (0)	1 (10.0)	3 (8.1)	1 (8.3)	0 (0)	5 (7.5)
Colitis	1 (33.3)	0 (0)	1 (2.7)	0 (0)	0 (0)	2 (3.0)
Hypothyroidism	0 (0)	0 (0)	2 (5.4)	1 (8.3)	1 (20.0)	4 (6.0)
Hyperthyroidism	0 (0)	0 (0)	2 (5.4)	0 (0)	0 (0)	2 (3.0)
Thyroiditis	0 (0)	0 (0)	0 (0)	0 (0)	1 (20.0)	1 (1.5)

TEAEs leading to treatment discontinuation occurred in 19/67 (28.4%) patients


PBD, pyrrolobenzodiazepine; SMQ, standardised MedDRA query; TEAEs, treatment-emergent adverse events

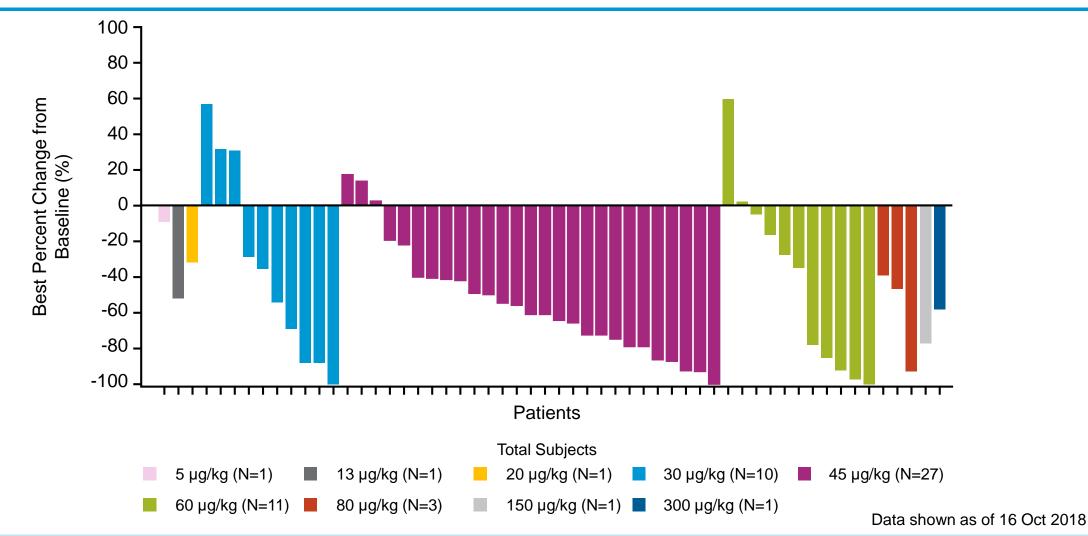
HL population: Drug Exposure

Camidanlumab tesirine exposure

All dose levels	3 (1, 15)		
80 µg/kg	4.0 (1, 5)		
60 µg/kg	2.5 (2, 8)		
45 µg/kg	4.0 (1, 10)		
30 µg/kg	4.5 (1, 9)		
Median (min, max) no. of cycles received			

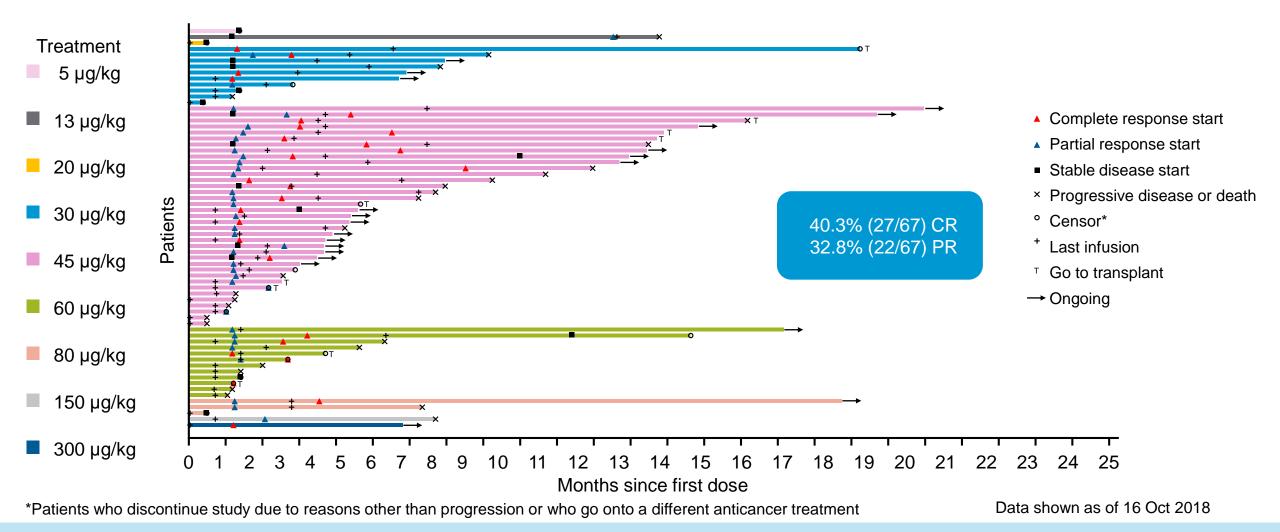
Time to first AE leading to dose modification

HL population: Response Rates (Efficacy Analysis Set)



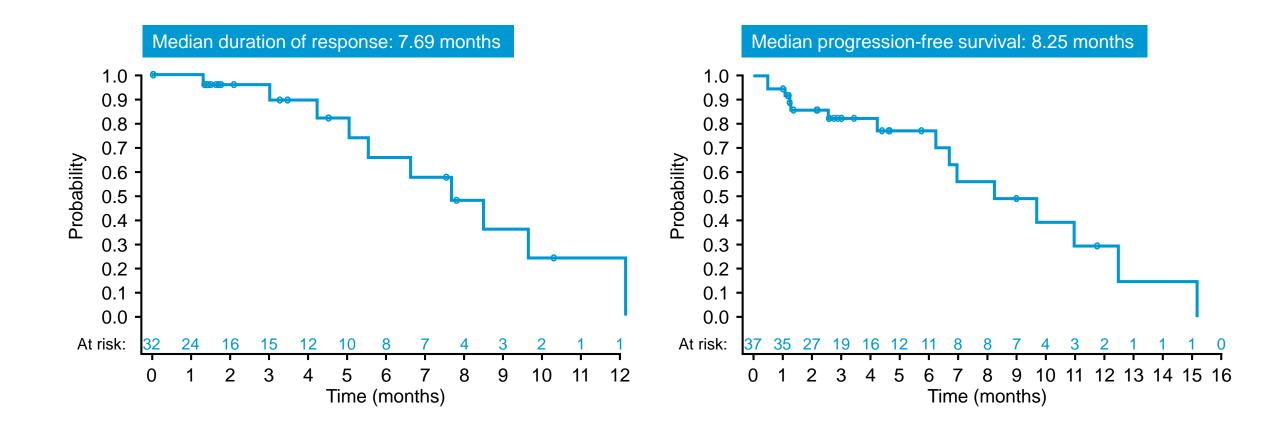
	Dose (µg/kg)					
Response*, n (%)	≤20 (n=3)	30 (n=10)	45 (n=37)	60 (n=12)	≥80 (n=5)	Total (N=67)
Overall response rate (CR+PR)	1 (33.3)	5 (50.0)	32 (86.5)	7 (58.3)	4 (80.0)	49 (73.1)
Complete response (CR)	0 (0)	4 (40.0)	16 (43.2)	5 (41.7)	2 (40.0)	27 (40.3)
Partial response (PR)	1 (33.3)	1 (10.0)	16 (43.2)	2 (16.7)	2 (40.0)	22 (32.8)
Stable disease	1 (33.3)	3 (30.0)	0 (0)	1 (8.3)	0 (0)	5 (7.5)
Progressive disease	0 (0)	1 (10.0)	5 (13.5)	4 (33.3)	0 (0)	10 (14.9)
Not evaluable	1 (33.3)	1 (10.0)	0 (0)	0 (0)	1 (20.0)	3 (4.5)

*Best visit response based on 2014 Lugano Criteria


HL population: Waterfall Plot Showing Responses for Individual Patients (Efficacy Analysis Set)

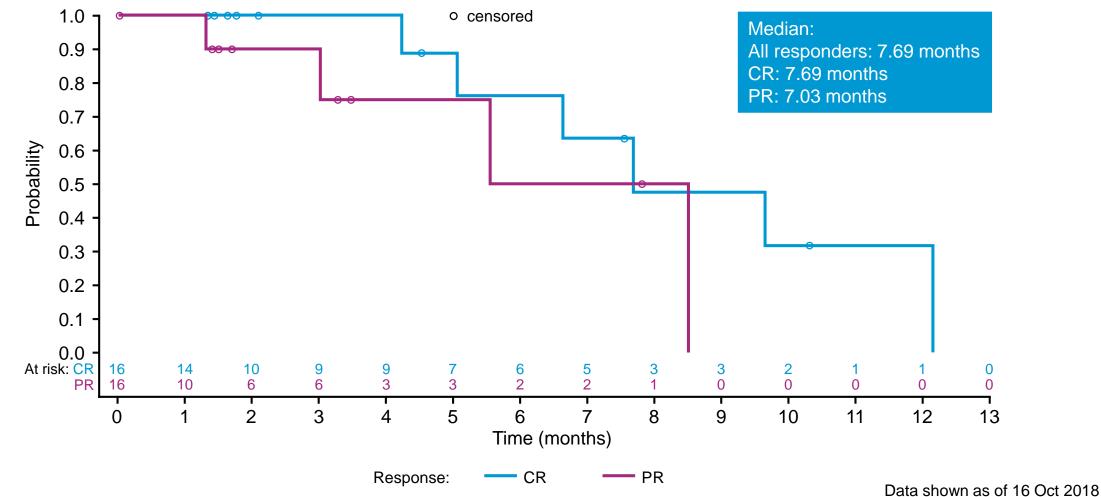
HL population: Swimmer Plot Showing Responses for Individual Patients (Efficacy Analysis Set)

Overall Response Rate by Prior Treatment (Efficacy Analysis Set), 45 $\mu g/kg$ and All Doses Groups



or Treatments	45 μg/kg dose (n=37)	All doses (n=67)		
Brentuximab vedotin	ORR 86.5% (32/37 patients)	ORR 73.8% (48/65 patients)		
Brentuximab vedotin	ORR 88.5%	ORR 72.3%		
Checkpoint Inhibitor	(23/26 patients)	(34/47 patients)		
Stem Cell Transplant	ORR 88.9% (16/18 patients)	ORR 67.5% (27/40 patients)		
Brentuximab vedotin				
Brentuximab vedotin Checkpoint Inhibitor	ORR 92.9% (13/14 patients)	ORR 67.9% (19/28 patients)		

BV, brentuximab vedotin; CHPi, checkpoint inhibitor; SCT, stem cell transplantation


HL population, 45 µg/kg dose group: Duration of Response and Progression-free Survival

Duration of Response by PR/CR – 45 µg/kg *HL patients*

Conclusions

- In patients with R/R HL, therapy with camidanlumab tesirine provided impressive OR and CR rates in a heavily pre-treated patient population
 - This includes ORR 88.5% in patients in the 45 µg/kg dose group who had received prior BV and CHPi
- Camidanlumab tesirine has shown encouraging activity in heavily pretreated patients with HL including the challenging subset of dual BV/CHPi failure
- Careful investigation for early identification of patients at high risk of autoimmune events, including Guillain–Barré Syndrome, are ongoing
- > Enrolment of patients with HL is ongoing in Part 2 at doses 30 µg/kg and 45 µg/kg Q3W
- > These data support further investigation in a planned Phase 2 study

Acknowledgments

Investigators and affiliations

- M Hamadani, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- GP Collins, Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- **F Samaniego**, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, TX, USA
- Al Spira, Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- A Davies, Cancer Research UK Centre, University of Southampton, Southampton, UK
- J Radford, University of Manchester and the Christie NHS Foundation Trust, Manchester, UK
- P Caimi, Case Western Reserve University (CWRU) -University Hospitals Cleveland Medical Center, OH, USA
- T Menne, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle
- SM Horwitz, Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA

> ADC Therapeutics:

- **J Boni**, ADC Therapeutics America, Inc, Murray Hill, NJ, USA
- **HG Cruz**, ADC Therapeutics SA, Epalinges, Switzerland
- JM Feingold, ADC Therapeutics America, Inc., Murray Hill, NJ, USA
- **S He**, ADC Therapeutics America. Inc., Murray Hill, NJ, USA
- JU Wuerthner, ADC Therapeutics SA., Epalinges, Switzerland

The authors would like to thank all the participating patients and their families, all study co-investigators and research coordinators, and editorial support from Fishawack Communications Ltd.

Study sponsored by ADC Therapeutics SA. http://clinicaltrials.gov/show/<u>NCT02432235</u>