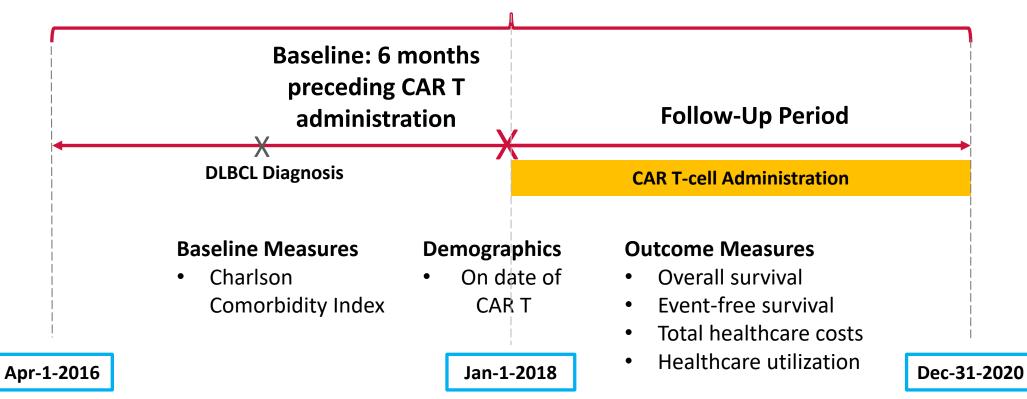


Real-World Effectiveness and Economic Impact Associated with Chimeric Antigen Receptor T-cell Therapy Among Older Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma in US

Dai Chihara, MD, PhD¹, Laura Liao, MS², Joseph Tkacz, MS³, Anjali Franco, MS³, Benjamin Lewing, PhD³
Karl M. Kilgore, PhD³, Loretta Nastoupil, MD¹, Lei Chen, MD, PhD²
¹Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
²ADC Therapeutics, New Providence, NJ, United States, ³Inovalon, Bowie, MD

Background

- Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, with more than half of patients diagnosed over the age of 65 and approximately 30% of patients are over the age of 75.¹
- Chimeric Antigen Receptor T-cell (CAR T) therapy has become a standard treatment for relapsed/refractory DLBCL.
- Though DLBCL is more prevalent in older patients, RWE data of CAR T use in older patients are scarce.
- The objective is to describe the RWE including effectiveness and economic impact associated with CAR T in older patients with relapsed/refractory DLBCL in the US.


Data Source and Selection Criteria

100% Medicare Fee-for-Service Parts A/B/D from 4/1/2016 to 12/31/2020

- Inclusion
 - ≥ 1 inpatient or ≥ 2 outpatient claims
 - diagnosis of DLBCL (ICD-10) between April 1, 2016 and December 1, 2020
 - ≥ 1 claim for CAR T following diagnosis of DLBCL
 - CAR T must have been administered on January 1, 2018 or later
 - Aged 65+ on the date of CAR T administration
- Exclusion
 - Patients with evidence of clinical trial participation

Study Design

Measurement Window

American Society of Hematology

Statistical analysis

- Analysis was stratified by three age groups
 - 65-69, 70-74, 75+
- Event: initiation of next treatment or death from any cause
- Bridging therapy: any DLBCL treatment within 28 days of CAR T administration
- Cox regression for EFS and OS
 - Variables of interest: Age, Sex, Comorbidity index, bridging treatment
- Healthcare utilization and costs were also stratified by CAR T administration setting
 - Inpatient vs outpatient

Patient population

Patients meeting diagnostic criteria for DLBCL between 4/1/2016 and 12/1/2020

n=78,839

n = 854

Age 65+ at CAR T administration with no evidence of clinical trial participation

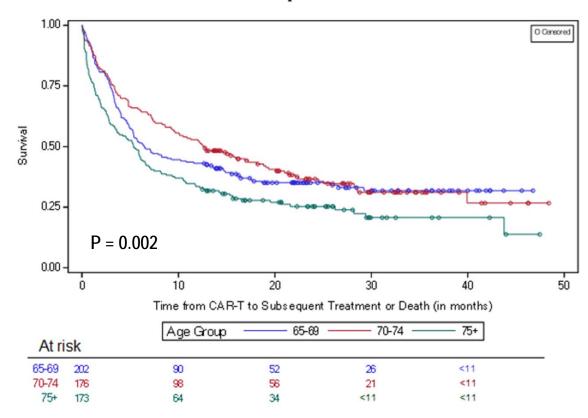
n=551

CAR T-cell Therapy utilization in Older Patients

Among patients who received 3rd line treatment and beyond

Age group	% of CAR T use in 3L+
Age 65-69	19.2%
Age 70-74	22.1%
Age 75+	12.8%

- Only 1 in 5 received CAR T therapy in age 65-74
- Only 1 in 9 received CAR T therapy in age 75+

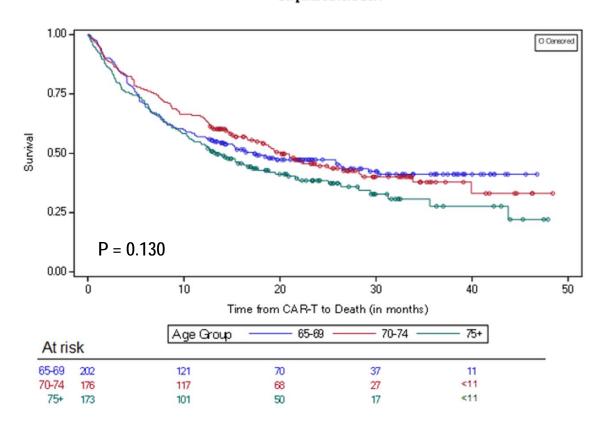

Baseline Characteristics

	Age 65-69 n=202		Age 70-74 n=176		Age 75+ n=173		Full Sample n=551	
Median age (range)	67	(65-69)	72	(70-74)	78	(75-90)	72	(65-90)
Male (n,%)	108	53.50%	93	52.80%	98	56.60%	299	54.30%
Urban/Suburban Residence (n, %)	160	79.20%	142	80.70%	142	82.10%	444	80.60%
Median Charlson Comorbidity Index (range)	4	(0-15)	4	(0-15)	4	(0-15)	4	(0-15)
Bridging Therapies* (n,%)		, ,		, ,		, ,		, ,
Any therapy	102	50.50%	69	39.20%	91	52.60%	262	47.50%
Chemotherapy or targeted therapy	64	31.70%	41	23.30%	55	31.80%	160	29.00%
Steroids*	<50	-	<50	-	23	13.30%	73	13.20%
Radiation*	<11	-	<11	-	13	7.50%	29	5.30%
CAR T Administration setting								
Inpatient (n,%)	171	84.70%	155	88.10%	130	75.10%	456	82.80%
Length of Stay (days, std)	19.7	12.4	24.2	21.2	20.5	13.1	21.4	16.2
Outpatient (n,%)	31	15.30%	21	11.90%	43	24.90%	95	17.20%

^{*}Cell sizes < 11 patients have been suppressed to maintain patient confidentiality

Outcomes - Event-Free Survival

Kaplan-Meier Plot


Median EFS in all patients

❖ 7.2 months (95%CI: 6.0 − 9.7)

Age group	Median EFS	1-year EFS
Age 65-69	6.5 months	43.1%
Age 70-74	12.6 months	51.7%
Age 75+	5.3 months	33.5%

Outcomes - Overall Survival

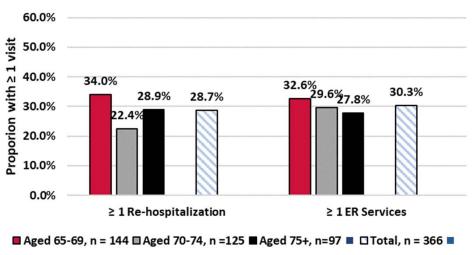
Kaplan-Meier Plot

Median OS in all patients

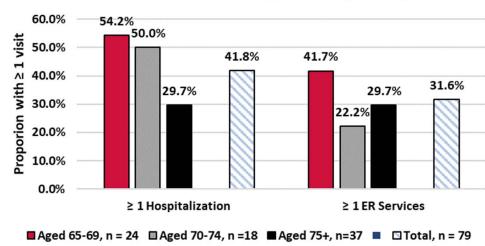
❖ 17.1 months (95%CI: 14.2 – 21.0)

Age group	Median OS	1-year OS
Age 65-69	17.3 months	56.9%
Age 70-74	20.1 months	64.2%
Age 75+	13.4 months	53.8%


Risk factors for EFS


Characteristics		Univariate		Multivariate		
		HR	95%CI	HR	95%CI	
Age groups	75+ vs. 65-69	1.37	1.07 - 1.74	1.41	1.10 - 1.82	
	75+ vs. 70-74	1.54	1.19 - 1.98	1.46	1.13 – 1.89	
Gender	Male vs. Female	1.01	0.81 – 1.22	0.92	0.75 – 1.14	
Urban/Suburban Residence	Rural vs. Urban	1.14	0.88 – 1.47	Not included	-	
Bridging therapy prior to administration	Present vs. Absent	1.34	1.09 – 1.64	1.27	1.03 – 1.56	
Charlson Comorbidity Index	5+ vs. 0-4	1.57	1.28-1.94	1.56	1.26 – 1.92	

Risk factors for OS


Characteristics		Univariate		Multivariate		
		HR	95%CI	HR	95%CI	
Age groups	75+ vs. 65-69	1.25	0.96 – 1.62	1.20	0.91 – 1.58	
	75+ vs. 70-74	1.29	0.98 - 1.70	1.20	0.90 – 1.58	
Gender	Male vs. Female	1.05	0.85 – 1.33	1.00	0.80 - 1.26	
Urban/Suburban Residence	Rural vs. Urban	1.22	0.93 – 1.60	Not included	-	
Bridging therapy prior to administration	Present vs. Absent	1.51	1.19 – 1.86	1.58	1.26 – 1.99	
Charlson Comorbidity Index	5+ vs. 0-4	1.63	1.30 – 2.05	1.39	1.11 – 1.75	

Outcomes – ER and inpatient utilization

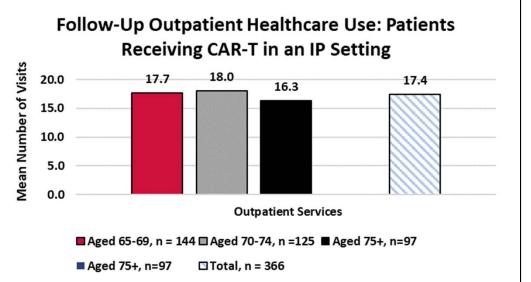
Healthcare Resource Use: Patients Receiving CAR-T in an OP Setting, n = 79 (17.8%)

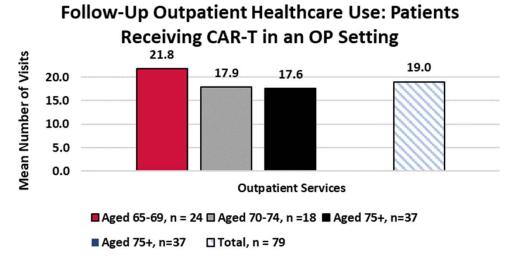
Initial Hospitalization CAR T
Administered

21.4 (16.2)

Follow-Up Hospitalizations

CAR T Administered in IP in OP


7.6 (6.6) 7.5 (6.3)



Hospitalization Length of

Stay (Mean, SD)

Outcomes – Outpatient Utilization

Outcomes – Healthcare Costs

Total Healthcare Costs (Median) \$400,000 \$364,036 \$333,698 \$352,572 \$342,099 \$350,000 \$300,000 \$250,000 \$200,000 \$150,000 \$100,000 \$50,000 \$0 Aged 65-69, n = 168 Aged 70-74, n =143 Aged 75+, n=134 Total, n = 445

- Median total healthcare costs incurred during the 90-day period following CAR T administration were similar across age categories
- Mean costs presented a similar pattern:

Aged 65-69: \$311,699

Aged 70-74: \$296,192

Aged 75+: \$271,767

Total sample: \$294,692

Conclusions

- This is the largest and nationally representative RWE study in US in older patients with DLBCL who received CAR T therapy.
- CAR T therapy is associated with favorable EFS in older patients, comparable to outcomes observed among the pivotal phase 2 studies.
 - Less favorable EFS was observed in patients aged 75+
- CAR T therapy use in older patients was low, especially in patients aged 75+.
- Charlson Comorbidity Index was an independent risk factor for both EFS and OS.
- Healthcare costs associated with CAR T therapy were high.
- This study indicated that there is unmet need for more accessible, effective, and tolerable therapy in older patients, especially in patients aged 75+.

