ldentification of predictive biomarkers for response of R/R DLBCL patients treated with
loncastuximab tesirine using low-pass whole-genome cell-free DNA sequencing (cfDNA-WGS)

[=] 5 [m]

Francesco Vallaniad', Victoria Cheung', Michael D Zamba', Joyce Liu', Amit Pasupathy', Hayley Donnella’, Mitch Bailey', Maggie Louie', Jimmy Lin', Karin Haveniths, [=]

Yajuan Qin?, Serafino Pantano®, Jens Wuerthners, Patrick H.van Berkel
'Freenome, 279 East Grand Avenue, 5th Floor, South San Francisco, CA, USA; “ADC Therapeutics SA, Biopole, Route de la Corniche 3B, 1066 Epalinges, Switzerland

Figure 1. Cohort description and profiling Figure 3. Gene set enrichment analysis reveals significantly decreased

signatures for B-cell gene sets in treated cases compared to baseline

Figure 5. Gene set enrichment analysis reveals higher activation levels of
proliferative and immune gene sets in non-responders at baseline
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