A Phase 1b, Open-Label, Dose-Escalation Study to Evaluate Camidanlumab Tesirine (Cami) as Monotherapy in Patients with Advanced Solid Tumors

Igor Puzanov¹, Patricia LoRusso², Kyriakos P. Papadopoulos³, Christopher T. Chen⁴, Yvan LeBruchec⁵, Xiaomin He⁶, Sandy Eisen⁷, Karin Havenith⁷, Joseph Boni⁶, Johanna Bendell⁸ 1Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; 2Yale Cancer Center, New Haven, CT, USA; 3South Texas Accelerated Research Therapeutics, San Antonio, TX, USA; 4Stanford Cancer Center, Stanford, CA, USA; 5ADC Therapeutics SA, Epalinges, Switzerland; 6ADC Therapeutics America, Inc., Murray Hill, NJ, USA; 7ADC Therapeutics (UK) Ltd, London, UK; 8Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, USA

BACKGROUND

• A significant association between high FoxP3+ regulatory T cell (T_{reg}) infiltration and shorter overall survival has been observed in some types of solid tumors (odds ratio 1.46; n < 0.001

- Poor prognosis in solid tumors is also associated with a low effector T cell (T_{off}) to T_{rog} ratio; depletion of tumor-infiltrating lymphocytes, particularly CD25+ T_{ran}, to increase this ratio has been explored to eradicate tumors²⁻⁴
- Camidanlumab tesirine (Cami; ADCT-301) is an antibody-drug conjugate comprising a human antibody (Ab) directed against CD25, stochastically conjugated via a cleavable linker to a pyrrolobenzodiazepine (PBD) dimer warhead, SG3199²
- Preclinical findings demonstrated potent antitumor activity in solid tumor models using a mouse surrogate⁴
- We report preliminary data from the monotherapy arm of a Phase 1b trial of Cami in selected advanced solid tumors (NCT03621982)

METHODS

Study Design

- This is a multicenter, open-label study with a standard 3+3 dose-escalation design
- After screening, patients receive Cami at a starting dose of 20 µg/kg via 30-min intravenous infusion every 3 weeks (O3W: 1 cvcle)
- Follow-up visits take place every 12 weeks, for up to 1 year
- Study objectives were:
- **Primary:** Characterize safety and tolerability of Cami monotherapy, and identify recommended Phase 2 dose for • Median (range) treatment duration was 22 (1–178) days future studies
- Key secondary: Evaluate preliminary Cami antitumor activity; pharmacokinetics (PK); and immunogenicity
- **Key exploratory:** Assess Cami pharmacodynamics (PD)
- Eligibility criteria: ≥18 years; pathologic diagnosis of solid tumor malignancy locally advanced or metastatic at screening; measurable disease per Response Evaluation Criteria in Solid Tumors v1.1; refractory to or intolerant of existing therapies with known clinical benefit; and no CD25 (interleukin-2R) Ab therapy in last 4 months

Safety and Tolerability Analyses

• Safety and tolerability of study drug were assessed by regular monitoring for adverse events (AEs), serious adverse events, dose interruptions or reductions, and incidence of doselimiting toxicities (DLTs)

Efficacy Analysis

• Efficacy was evaluated by disease control rate, assessed as stable disease or better (partial or complete response)

Pharmacokinetics and Pharmacodynamics Analyses

- PK profiling of serum drug concentrations used electrochemiluminescence immunoassay (PBD-conjugated Ab and total Ab) and liquid chromatography-mass spectrometry (unconjugated SG3199)
- Lymphocyte subpopulations were quantified in whole blood using flow cytometry, with T_{off}: CD8+ and T_{reg}: CD25+/CD127low/FoxP3+ (CD3+/CD4+)
- Linear mixed-effects modeling assessed effects of time and dose on lymphocyte subsets; repeated-measures correlation (*r*_{rm}) analysis⁵ evaluated distinct relationships between endpoint pairs

RESULTS

• Of 44 patients who enrolled (data cut-off Mar 26, 2021), the two most common tumor types were colorectal and pancreatic, experienced by 15 (34.1%) and 14 (31.8%) patients, respectively (**Table 1**)

Table 1. Baseline demographic and clinical characteristics					
Characteristic	(N=44)				
Age, years					
Median (range)	60.5 (33.0-82.0)				
Sex, n (%)					
Male Female	26 (59.1) 18 (40.9)				
Eastern Cooperative Oncology Group score, n (%)					
Grade 0 Grade 1	18 (40.9) 26 (59.1)				
Tumor type at stages IV (n=35), IVA (n=6), IVB (n=2), IVC (n=1), n (%)					
Colorectal Pancreatic Ovarian/fallopian Renal cell carcinoma Head and neck Gastric and esophageal/gastroesophageal junction Non-small cell lung cancer Melanoma Triple-negative breast cancer	15 (34.1) 14 (31.8) 3 (6.8) 3 (6.8) 3 (6.8) 2 (4.5) 2 (4.5) 1 (2.3) 1 (2.3)				
Number of previous systemic therapies					
Median (range)	4 (1-9)				

Treatment

- Patients received a median (range) of 2 (1–6) cycles of Cami: 20 µg/kg (n=3), 30/45/60 µg/kg (each n=5), 80 µg/kg (n=8), 100 μg/kg (n=7), 125 μg/kg (n=8), and 150 μg/kg (n=3) Q3W; monotherapy dose escalation is now complete
- Primary reasons for treatment discontinuation were progressive disease (n=36; 81.8%), patient withdrawal (n=5; 11.4%), death (n=2; 4.5%), and unacceptable toxicity (n=1; 2.3%). Primary reasons for study discontinuation were death (n=33; 75%), patient withdrawal (n=4; 9.1%), completed study (1 year of survival follow-up after last Cami dose, n=2; 4.5%), and lost to follow-up (n=1; 2.3%)

Safety and Tolerability

- No DLTs were reported; maximum tolerated dose (MTD) was not reached
- All-grade treatment-emergent AEs (TEAEs) in ≥20% of patients were nausea (n=18; 40.9%), decreased appetite and fatigue (both n=16; 36.4%), constipation (n=13; 29.5%), abdominal pain (n=12; 27.3%), and rash (n=10; 22.7%)
- The only Grade \geq 3 TEAE in \geq 10% patients was anemia (n=5; 11.4%)
- Grade 3 autoimmune AEs of colitis, as well as TEAEs of immunemediated AE and systemic inflammatory response syndrome and pancreatitis, were reported in 1 (2.3%) patient each
- Grade 3 neurologic AEs of asthenia, and TEAEs of dysphagia and muscular weakness, were reported in 1 (2.3%) patient each. No Guillain-Barré syndrome of any grade was reported
- One (2.3%) patient discontinued treatment owing to TEAEs considered probably related to Cami (maculopapular rash [Grade 2], esophagitis [Grade 1], and stomatitis [Grade 1])

No Cami-related TEAEs were fatal

- Efficacy
- Disease control rate was 25.0% (95% CI: 11.1, 34.7), with 11/44 patients attaining stable disease: 20 µg/kg (n=1), 30 µg/kg (n=3), 100 µg/kg (n=3), and 125 µg/kg (n=4) Q3W
- Median (95% CI) duration of stable disease was 2.8 (1.6, 4.4) months

Key Messages

- Cami monotherapy showed an encouraging safety profile in advanced solid tumors; the MTD was not reached. Cami is now being investigated in combination with pembrolizumab
- Treatment with Cami showed:
- -Significant time (T_{eff}, T_{rea}) and dosewith-time (T_{eff}:T_{rea}, T_{rea}) related effects
- -Significant increase in T_{eff} : T_{reg} ratio, thought to be associated with immune-related antitumor effects¹⁻⁴
- PK exposure profile comparable to previous analyses⁶

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® and the author of this poster

Funding This study is sponsored by ADC Therapeutics SA (NCT03621982).

Acknowledgments

The authors would like to thank and acknowledge the participating patients and their families, and all study co-investigators and research coordinators. The authors also thank Thierry Cousin, formerly of ADC Therapeutics SA, Epalinges, Switzerland, for his contributions to the development of the abstract. The authors received editorial/writing support in the preparation of this poster provided by Heather St Michael of Fishawack Communications Ltd, part of Fishawack Health, funded by ADC Therapeutics SA.

Disclosures

Presenting author Prof. Igor Puzanov discloses consultancy/advisory activities for Amgen, Iovance Biotherapeutics, Merck, and Nouscom

He and an immediate family member hold stock in Celldex Inc. See online abstract at https://meetinglibrary.asco.org/ for the full list of all authors' disclosures.

References

1. Shang B, et al. Sci Rep 2015;5:15179. DOI:10.1038/srep15179. 2. Zammarchi F, et al. J ImmunoTher Cancer 2020;8:e000860. 3. Vargas FA, et al. Immunity 2017;46(4):577-586. 4. Facciabene A, et al. Cancer Res 2012;72(9):2162-2171. 5. Bakdash JZ & Marusich LR. Front Psychol 2017;(8):4561–4513. 6. Hamadani M, et al. Lancet Haem 2021; In press.

Contact information

Contact Prof. Igor Puzanov: Igor.Puzanov@RoswellPark.org

Pharmacokinetics

- PK data were available for 31 (70.5%) patients (20–150 µg/kg Q3W)
- Dose-related increases in PBD-conjugated Ab and total Ab exposure in serum (maximum concentration and area under the curve) were observed across the dose range
- Apparent clearance of PBD-conjugated Ab was ~1.15 L/day (at 125 µg/kg Q3W during Cycle 2), with moderate-to-marked inter-patient variability across doses
- Nominal accumulation was seen with the Q3W dosing regimen
- Concentrations of unconjugated SG3199 were predominantly below the limit of quantification

Pharmacodynamics

- PD data were available for 44 (100%) patients (20-150 µg/kg Q3W)
- Profiles for lymphocyte subsets of CD8+ T_{eff} cells, T_{reg} cells, and T_{eff} , T_{reg} ratio at the 125 µg/kg Q3W dose (n=8) are shown in Figure 1
- In Cycle 1, T_{eff} and T_{reg} cell counts increased transiently, peaking at about Day 5; from Cycle 2, T_{ma} cells decreased over time in comparison with T_{eff} and T_{eff} . T_{reg} ratio values, which both increased
- Similar trends were observed for all doses (data not shown)

ertical gray lines denote day (pre-dose) of a planned dosing event. ; CD25+/CD127low/FoxP3+ (CD3+/CD4+) lymphocytes as a fraction of CD4 absolute value p T_{reg} ratio: CD8+ to CD25+/CD127low/FoxP3+ (CD3+/CD4+) lymphocytes , cycle; D, day; EOT, end of treatment; Q3W, every 3 weeks; T_arr, effector T cell; T_arr, regulatory T cell.

- $T_{\rm eff}$ cells were negatively associated with time (p<0.0001) (**Table 2**)
- T_{rea} cells were negatively associated with both dose and time (p=0.0031), and the interaction between dose and time (p=0.0004)
- T_{eff} : T_{reg} ratio was positively associated with time (p<0.0001) and the interaction between dose and time (p<0.0001)

between lymphocyte subset endpoints, and time and dose				
P values for models tested ^a				
Endpoint	Model 2 (Time)	Model 3 (Time + dose)	Model 4 (Time x dose interaction)	Effect
T_{eff}	<0.0001	0.4227	0.3428	Effect of time alone is significant (-)
T _{reg}	<0.0001	0.0031	0.0004	Effects of dose and time are significant (-); interaction between dose and time is significant (-)
T _{eff} :T _{reg} ratio	<0.0001	0.3261	<0.0001	Effect of time is significant (+); interaction between dose and time is significant (+)

*Model 1: Conc ~ 1 + (1 | Subj. ID), Null model; Model 2: Conc ~ Time + (1 | Subj. ID); Model 3: Conc ~ Time + Dose + (1 | Subj. ID); Model 4: Conc ~ Time x Dose + (1 | Subj. ID). Significance values in **bold** indicate model considered best.

Trees: CD25+/CD127low/FoxP3+ (CD3+/CD4+) lymphocytes as a fraction of CD4 absolute value Trees to Trees ratio: CD8+ to CD25+/CD127low/FoxP3+ (CD3+/CD4+) lymphocytes. Conc, concentration; subj, subject; T_{eff} effector T cell; T_{res} regulatory T cell.

- Correlative analysis indicated that Cami has a greater suppressive effect on T_{reg} cells than T_{eff} cells (**Figure 2**)
- A highly significant and strongly negative correlation was observed between CD8+:T_{reg} ratio and T_{reg} cell count (r, =-0.812, p=1.29e-98); correlation between CD8+:T_{reg} ratio and CD8 cell count is significant, but modestly negative (r_{m} =-0.201, p=3.826e-05)

: CD25+/CD127low/FoxP3+ (CD3+/CD4+) lymphocytes as a fraction of CD4 absolute value. Deservations (dots) from the same patient are in the same color; corresponding lines show the repeate measures correlation fit for each patient. Gray dotted line denotes regression line between measures 1 and 2 ignoring the patient variable. Number of patients evaluated: T_{rec} and CD8+: T_{rec} ratio, both n=44 lymphocyte and CD8+, both n=41. Q3W, every 3 weeks; Tarr: effector T cell; Tarri regulatory T cel

Immunogenicity

• There were no instances of confirmed anti-drug Ab response