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INTRODUCTION
 ● AXL overexpression is linked to high metastatic potential and 

chemotherapy resistance, consequently leading to poor overall survival in 
some solid tumors, including sarcoma and non–small cell lung cancer1-3

 ● Mipa is an antibody–drug conjugate (ADC) comprising a humanized anti-
AXL antibody conjugated to a potent chemotherapeutic agent, SG3199 
(pyrrolobenzodiazepine dimer cytotoxin), via a cleavable linker4

 – Mipa demonstrated antitumor activity in preclinical murine xenograft 
models of sarcoma, adenoid cystic carcinoma, and pancreatic 
cancer.4-6 Further, Mipa showed promising clinical activity in patients 
with solid tumors in phase 1 trials5,7

OBJECTIVE
 ● To develop a model predicting the biodistribution and antitumor effect of 

Mipa for virtual patients with sarcoma following various dosing regimens 

METHODS
Model Construction

 ● A novel physiologically based PK quantitative systems pharmacology model 
was developed to describe the effect of Mipa on sarcoma. The construct 
incorporated multiple literature-based model elements,8 including 
physiologic tissue distribution and interstitial compartment disposition of 
IgG1-based ADC, ADC uptake, SG3199 release, and cell killing of the tumor 
cells (Figure 1)

 

Figure 1. PBPK-QSP Model for Mipa
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ADC, antibody–drug conjugate; DAR, drug-antibody ratio; FcRn, IgG receptor; Kdeg, degradation rate for surface AXL; Kend, endosomes to 
lysosomes ADC transport rate; Kgrow, growth rate for tumor cells; Kint, internalization rate for surface AXL; Kkill, rate of payload-induced cell  
killing; Klys, ADC lysosomal degradation rate; Koff, off-rate for ADC binding to AXL; Kon, on-rate for ADC binding to AXL; Krec, AXL recycling rate  
from endosomes to the cell surface; Ksyn, synthesis rate for surface AXL; mAb, monoclonal antibody; Mipa, mipasetamab uzoptirine; PBPK-QSP, 
physiologically based PK quantitative systems pharmacology; PeffΔC, payload diffusion out of AXL+ cells and into AXL– cells (driven by 
concentration gradient); PK, pharmacokinetics.

 ● Key assumptions were the following:
 – AXL+ cells only existed in the tumor
 – Inside the tumor, all AXL+ cells were assumed to have the same AXL 

expression level, while all AXL– cells were assumed to have no  
AXL expression

 – AXL+ and AXL– cells were assumed to be well mixed in the tumor
 – Unbound SG3199 was assumed to be diffusing from AXL+ cells to the 

tumor interstitium and then to AXL– cells, but unbound SG3199 did not 
diffuse into or out of the tumor

 – ADC deconjugation in plasma was assumed to be negligible
 – Tumor perfusion was assumed to be the only parameter that impacted 

ADC penetration into the tumor (i.e., this model did not explicitly include a 
penalty for larger tumor size)

 – sAXL was not included in the base model, but sensitivity analyses (data not 
shown) were performed and sAXL was projected to have a limited impact 
on the antitumor effect of Mipa 

 – The tumor was assumed to be a sphere; classification of partial response 
was based on 30% reduction in tumor diameter (i.e., 66% reduction in 
tumor volume)

 ● In vitro parameters (e.g., receptor dynamics and ADC-induced cell death) 
were parameterized based on literature values or optimized based on 
preclinical data (Table 1)

 – PK parameters were fit to clinical PK data
 – The following 4 parameters were selected to vary in sarcoma virtual patient 

grid scans
 ● Tumor doubling time
 ● Surface AXL copy per AXL+ cell
 ● AXL+ fraction
 ● Tumor perfusion

Table 1: Parameters for Mipa In Vitro Model
Parameter 
name

Description Reference Value

Variable parameters
Rcopies AXL copy number on AXL+ cells Mavrangelos et al.9 1k, 2k, 5k, 10k, 

20k, 50k, 100k
Kgrow Growth rate for tumor cells Calculated based on 

tumor doubling time 
(20, 30, or 40 days)

0.0014 h–1, 
0.00096 h–1, 
0.00072 h–1

AXL+ fraction The fraction of AXL+ cells in the 
tumor at the beginning of treatment

Flem-Karlsen et al.10 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 
0.9, 1.0

Tumor  
perfusion 
(L/h/L)

Blood perfusion rate through the 
tumor

Soni et al.11 20, 25, 30

Constant parameters
DAR Drug-antibody ratio Zammarchi et al.4 1.8
Kd ADC-AXL binding affinity Zammarchi et al.4 0.311 nM
Kon On-rate for ADC binding to AXL Optimized based on 

preclinical data
2.07 nM–1·h–1

Koff Off-rate for ADC binding to AXL – Kon·Kd

Ksyn Synthesis rate for surface AXL Optimized based on 
preclinical data

0.02 nmol·h–1

Kdeg Degradation rate for surface AXL Bae et al.12 0.693 h–1

Kint Internalization rate for surface AXL Optimized based on 
preclinical data

9.02 h–1

Kend Endosomes to lysosomes ADC 
transport rate

Hopkins et al.13 5.54 h–1

Klys ADC lysosomal degradation rate Hopkins et al.13 5.54 h–1

Krec AXL recycling rate from endosomes 
to the cell surface

Optimized based on 
preclinical data

0.187 h–1

Krec_AR ADC-AXL complex recycling rate from 
endosomes to the cell surface

Optimized based on 
preclinical data

2.43 h–1

Peff Membrane permeability Ogitani et al.14 12.2E–6 cm2

Emax payload Maximum killing efficiency induced 
by SG3199 inside cells

Optimized based on 
preclinical data 

0.0099 h–1

τ Delayed cell death Caimi et al.15 1 h
k_PL SG3199 clearance in the tumor 

interstitium
Optimized based on 
preclinical data

0.04 h–1

PS_Kd Equilibrium binding constant for 
ADC to nonspecific cell membrane 
sites, governing PBPK tissue-specific 
clearance

Optimized based on 
PK data

0.01 µM

Kd_6WT Equilibrium binding constant for 
ADC to FcRn, governing PBPK tissue-
specific distribution and clearance

Optimized based on 
PK data

145 nM

ADC, antibody–drug conjugate; FcRn, IgG receptor; Mipa, mipasetamab uzoptirine; PBPK, physiologically based PK model;  
PK, pharmacokinetics.

RESULTS
 ● Modeling results indicated that more than 50% of patients with tumors >40% AXL+ were predicted to achieve 

either a complete or partial response when Mipa was dosed at 13 mg Q3W (Figure 2A)
 ● When explored at a higher dose, Mipa was predicted to achieve over 50% responders when AXL+ cell fraction 

was >20% and Mipa was dosed at 19 mg Q3W (Figure 2B)
 – Additionally, the model indicated that above a certain threshold (10k per AXL+ cell at 13 mg Q3W; 2.5K per AXL+ 

cell at 19 mg Q3W), the likelihood of response did not continue to increase

Figure 2. Predicted Responder Percentage in Populations With Varying AXL Expression per 
Positive Cell and Fraction of AXL+ Cells With Mipa Dosages of (A) 13 mg Q3W and (B) 19 mg Q3W
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CR, complete response; Mipa, mipasetamab uzoptirine; PR, partial response; Q3W, every 3 weeks.

 ● Modeling results predicted that a fractionated dose interval or high induction dose followed by maintenance 
were predicted to promote sarcoma volume reduction in tumors with varying AXL expression (Figure 3)

Figure 3. Model-Predicted Tumor Control Comparing the Effects of Mipa Administration of  
11 mg Q3W Versus Dose Fractionation Versus High Induction/Maintenance 
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AXL+ cell; right panel: 10% AXL+ cells, 10,000 surface AXL per AXL+ cell.
Mipa, mipasetamab uzoptirine; QW, every week; Q2W, every 2 weeks; Q3W, every 3 weeks.

 ● Simulation of various dosing regimens, including fixed Q3W dosing and a high induction dose followed by 
maintenance, suggested that dosing Mipa at higher levels would result in a higher percentage of responders 
(Figure 4)

Figure 4. Predicted Response by Total Dose of Mipa for Q3W and High Induction/
Maintenance Dosing at Various Levels for (A) Sarcoma Ranging From 10% to 100% AXL+ Cells 
and (B) Sarcoma With ≥50% AXL+ Cells 
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 ● Other simulations predicted that the sarcoma proliferation rate was a key driver for differential tumor 
shrinkage (data not shown) and that increasing concentrations of sAXL did not substantially impact Mipa 
concentration in the plasma or tumor volume change (data not shown)

Limitations
 ● A limitation of the constructed model is that it focused solely on efficacy. Translating efficacious dosage levels 

from virtual populations to clinical populations can be complicated by safety considerations that were not 
within the scope of this QSP model

 ● Although the model can be used to predict the efficacy of different dosing schemes, the model does not 
account for the clinical feasibility of administering different doses, such as Q3W administration versus QW 
administration
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CONCLUSIONS
 ● The model predicted that a higher total dose 

(up to 19 mg, administered every 3 weeks 
[Q3W]) of ADCT-601 (mipasetamab uzoptirine; 
Mipa) resulted in a higher percentage of 
responders in patients with sarcoma

 ● Tumor proliferation rate, tumor perfusion, 
and tumor heterogeneity (i.e., the fraction of 
AXL+ cells in the tumor) were predicted to be 
key factors that impacted predicted tumor 
volume reduction with Mipa treatment

 ● Soluble AXL (sAXL) in the plasma was 
predicted to have a minor impact on 
Mipa plasma pharmacokinetics (PK) and 
antitumor effect, likely due to Mipa plasma 
concentrations greatly exceeding sAXL levels

By employing PBPK-QSP modeling, dosing 
regimens can be evaluated to explore hypotheses 
for further clinical investigation

Targeting AXL Mipa in sarcoma
Mipa is an ADC comprising a humanized 
anti-AXL antibody conjugated to a PBD 
dimer cytotoxin

AXL-targeting humanized 
monoclonal antibody

Stable protease-cleavable 
linker
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Results The model predicted several key variables that impacted the chances of patients with sarcoma 
achieving a complete or partial response following treatment with Mipa

AXL is an attractive 
therapeutic target, as 
AXL expression is 
associated with 
increased metastasis 
and poor prognosis in 
some solid tumors, 
including sarcoma

Methods A novel PBPK-QSP model was developed to describe the effect of Mipa on sarcoma, incorporating 
literature-based model elements and in vitro data and validated with clinical PK data
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Higher total doses of Mipa were predicted to result in a higher percentage 
of patients with sarcoma achieving either a complete or partial response

The fraction of AXL+ cells and variable surface expression of AXL were 
predicted to impact the likelihood of response to Mipa

Simulations of fractionated versus consistent (Q3W) dosing of Mipa 
showed that dose fractionation improved tumor volume reduction
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