ZYNLONTA® (loncastuximab tesirine-lpyl) – Renal Safety and Use in Post-Transplant Lymphoproliferative Disorder (PTLD)

Summary

- LOTIS-1 was the first-in-human Phase 1, open-label, single-arm, multicenter study that evaluated the safety and tolerability of ZYNLONTA in 183 patients (>18 years of age) with relapsed or refractory (R/R) B-Cell Non-Hodgkin Lymphoma (B-NHL).^{1,4}
 - In LOTIS-1 trial, 24 out of 183 patients (13.1%) reported renal and urinary disorders, with
 7 patients (3.8%) experiencing Grade ≥3 events.
- LOTIS-2 was a Phase 2, open-label, single-arm, multicenter study which evaluated the efficacy and safety of ZYNLONTA monotherapy in patients with R/R diffuse large B-cell lymphoma (DLBCL) following >2 lines of prior systemic therapy.^{2,5}
 - o In LOTIS-2 trial, 14 out of 144 patients (9.7%) experienced renal-related treatmentemergent adverse events (TEAEs), including 4 patients (2.8%) with Grade 3 and 1 patient (0.7%) with a Grade 5 event.
- An independent case report demonstrated clinical benefit of ZYNLONTA in a patient with Post-Transplant Lymphoproliferative Disorder (PTLD) and severe renal dysfunction, with no evidence of treatment-related renal deterioration.³

Background

- ZYNLONTA is an antibody drug conjugate (ADC) comprised of a humanized anti-CD19 monoclonal antibody (Ab) conjugated to a pyrrolobenzodiazepine (PBD) dimer toxin.¹
 - LOTIS-1 was a Phase 1, open-label, single-arm, multicenter study which evaluated the safety and tolerability of ZYNLONTA monotherapy in 183 adult patients with relapsed or refractory (R/R) B-Cell Non-Hodgkin's Lymphoma (B-NHL).¹
 - LOTIS-2 was a pivotal Phase 2, open-label, single-arm, multicenter study that evaluates the efficacy and safety of ZYNLONTA monotherapy in adult patients with relapsed or refractory diffuse large B-cell lymphoma (R/R DLBCL) following ≥2 lines of prior systemic therapy.²
- PTLD is a severe complication of solid organ transplantation, often associated with prolonged immunosuppression. DLBCL is the most common subtype.³

Clinical Data

LOTIS-1 (Phase 1)¹

All grade renal and urinary disorders were reported in 24 patients (13.1%), Grade ≥3 events occurred in 7 patients (3.8%), including: Acute kidney injury: 6 patients (3.3%), Hematuria: 1 patient (0.5%), Oliguria: 1 patient (0.5%), Anuria: 1 patient (0.5%).

LOTIS-2 (Phase 2)

- All grade renal-related TEAEs were reported in 14 patients (9.7%), Grade 3 events occurred in 4 patients (2.8%), and Grade 5 events in 1 patient (0.7%).^{2,5}
 - Events included: Acute kidney injury: 4 patients (2.8%), Hydronephrosis: 2 patients (1.4%). Other renal TEAEs included dysuria 2 patients (1.4%), pollakiuria 2 patients (1.4%), nocturia 1 patient (0.7%), urinary incontinence 1 patient (0.7%) and ureterolithiasis 1 patient (0.7%).

- Acute kidney injury reported as a TEAE leading to a fatal outcome in one patient was not considered related to ZYNLONTA therapy.⁵
- There was no cumulative renal function decline, and mean creatinine levels remained stable throughout cycles.⁵

Independent Case Report: Use of ZYNLONTA in PTLD³

- Alshemmari et al. (2025) reported a case involving a 41-year-old female kidney transplant recipient with DLBCL-type PTLD. After relapse following R-CHOP and polatuzumab-based therapy, she presented with cervical lymphadenopathy and tonsillar involvement.
 - \circ The patient had severe renal dysfunction, serum creatinine 633 μmol/L, eGFR <10 mL/min/1.73 m².
 - She received 4 cycles of ZYNLONTA, 0.15 mg/kg for cycles 1–2 and 0.075 mg/kg for cycles 3–4.
 - PET scan after 4 cycles demonstrated complete metabolic response. A 5th cycle was administered without renal deterioration.

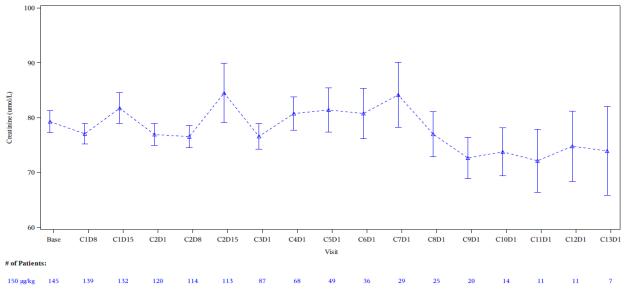
Tables

Table 1. Renal-Related TEAEs by System Organ Class in LOTIS-1 (Safety Analysis Set)⁴

TEAE, n (%)	(%) Dose (µg/kg)					
	≤90*	120	150	200		
	Part 1 (N=17)	Part 1+2 (N = 42)	Part 1+2 (N = 88)	Part 1 (N = 36)	Total (N=183)	
Renal and Urinary Disorders	1 (25.0)	9 (21.4)	10 (11.4)	4 (11.1)	24 (13.1)	
Acute Kidney Injury	-	2 (4.8)	3 (3.4)	1 (2.8)	6 (3.3)	
Dysuria	-	1 (2.4)	2 (2.3)	1 (2.8)	4 (2.2)	
Hematuria	-	1 (2.4)	2 (2.3)	-	3 (1.6)	
Pollakiuria	-	1 (2.4)	2 (2.3)	-	3 (1.6)	
Proteinuria	-	1 (2.4)	1 (1.1)	-	2 (1.1)	
Urinary incontinence	-	-	2 (2.3)	-	2 (1.1)	
Urinary retention	1 (5.9)**	1 (2.4)	-	-	2 (1.1)	
Anuria	-	-	-	1 (2.8)	1 (0.5)	
Bladder Spasm	1 (5.9)**	-	-	-	1 (0.5)	
Hydronephrosis	-	1 (2.4)	-	-	1 (0.5)	
Nocturia	-	-	-	1 (2.8)	1 (0.5)	
Oliguria	-	1 (2.4)	-	-	1 (0.5)	
Renal failure	-	1 (2.4)		-	1 (0.5)	

Values are n (%); TEAE, treatment-emergent adverse event; Part 1, dose escalation; Part 2, dose expansion

Table 2. Renal-Related TEAEs in LOTIS-2 (All-Treated Population) Adapted from Data on File ADC Therapeutics⁵


	Grade 1 n (%)	Grade 2 n (%)	Grade 3 n (%)	Grade 4 n (%)	Grade 5 n (%)	All Grades n (%)
Renal and Urinary Disorders	9 (6.2)	0	4 (2.8)	0	1 (0.7)	14 (9.7)
Acute Kidney Injury	2 (1.4)	0	1 (0.7)	0	1 (0.7)	4 (2.8)
Dysuria	2 (1.4)	0	0	0	0	2 (1.4)
Hydronephrosis	0	0	2 (1.4)	0	0	2 (1.4)
Pollakiuria	2 (1.4)	0	0	0	0	2 (1.4)

^{*}No renal-related adverse events were reported in 30 $\mu g/kg$, 60 $\mu g/kg$, or 90 $\mu g/kg$ treatment groups. **15 $\mu g/kg$ treatment arm

	Grade 1 n (%)	Grade 2 n (%)	Grade 3 n (%)	Grade 4 n (%)	Grade 5 n (%)	All Grades n (%)
Bladder Hypertrophy	1 (0.7)	0	0	0	0	1 (0.7)
Bladder Spasm	0	1 (0.7)	0	0	0	1 (0.7)
Nocturia	1 (0.7)	0	0	0	0	1 (0.7)
Ureterolithiasis	0	0	1 (0.7)	0	0	1 (0.7)
Urinary incontinence	1 (0.7)	0	0	0	0	1 (0.7)
Urinary retention	0	1 (0.7)	0	0	0	1 (0.7)

Patients received ZYNLONTA intravenously on Day 1 of each 21-day cycle, at 150 μg/kg for 2 cycles, then 75 μg/kg thereafter.

Figure 1: Mean (SE) Plot of Creatinine (umol/L) All-Treated Population. Adopted from Data on File. ADC Therapeutics.⁵

Note: Baseline is defined as the last non-missing value before the initial administration of ADCT-402. Visits with less than 5 assessments of a lab test are not displayed. C-cycle. D-day.

Literature Search

 A PubMed biomedical literature search conducted on May 28, 2025, yielded an independent case report on use of ZYNLONTA in the management of DLBCL as PTLD in a kidney transplant recipient.

Relevant Prescribing Information

Section 12: Pharmacokinetics⁶

Section 12.3: Specific Populations

- No clinically significant differences in the pharmacokinetics of loncastuximab tesirine-lpyl were observed based on age (20-94 years), sex, race (White vs. Black), body weight (42.1 to 160.5 kg), ECOG status (0 to 2) or mild to moderate renal impairment (CLcr 30 to <90 mL/min using the Cockcroft-Gault equation).
- The effect of severe renal impairment (CLcr 15 to 29 mL/min), and end-stage renal disease with or without hemodialysis on loncastuximab tesirine-lpyl pharmacokinetics is unknown.

References

¹Hamadani M, Radford J, Carlo-Stella C, et al. Final Results of a Phase 1 Study of loncastuximab tesirine in relapsed/refractory B-cell Non-Hodgkin Lymphoma. Blood. 2020. DOI: 10.1182/blood.2020007512

²Caimi PF, Ai WZ, Alderuccio JP, et al. Loncastuximab tesirine in relapsed/refractory diffuse large B-cell lymphoma: long-term efficacy and safety from the phase 2 LOTIS-2 study. Haematol. Published online August 31, 2023. doi:110.3324/haematol.2023.283459

³Alshemmari S, et al. *Management of Diffuse Large B-Cell Lymphoma as PTLD in a Kidney Transplant Recipient: A Case Report.* Hematol Rep. 2025;17(3):22. doi: 10.3390/hematolrep17030022

⁴Data on File, LOTIS 1 Clinical Study Report. ADC Therapeutics.

⁵Data on File, LOTIS 2 Clinical Study Report. ADC Therapeutics.

⁶ZYNLONTA® (loncastuximab tesirine-lpyl) FDA-approved Prescribing Information. October 2022.

ZYNLONTA® is a registered trademark of ADC Therapeutics SA.

ADC Therapeutics encourages all health care professionals to report any adverse events and product quality complaints to medical information at 855-690-0340. Please consult the ZYNLONTA Prescribing Information.